Pearson Edexcel Level 1/Level 2 GCSE (9 - 1	Centre Number	Candidate Number
Mathema	tics	
Paper 1 (Non-Calcu	lator)	
		Higher Tier
Sample Assessment Materials for first Time: 1 hour 30 minutes	t teaching September 2015	Paper Reference
You must have: Ruler graduate protractor, pair of compasses, p		llimetres, Total Marks
nstructions		
 Use black ink or ball-point pen. Fill in the boxes at the top of the centre number and candidate not canceled and the second structure of the second structu	his page with your name, number. aces provided <i>you need</i> .	Adjusted

Other names

Information

Write your name here

Surname

• The total mark for this paper is 80

the end of your solution.

• The marks for **each** question are shown in brackets - use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

©2015 Pearson Education Ltd.

PEARSON

Pearson Edexcel Level 1/Level 2 GCSE (9 - 1) in Mathematics Sample Assessment Materials – Issue I – September 2014 © Pearson Education Limited 2014

Formulae Sheet

Perimeter, area, surface area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where *a* is constant acceleration, *u* is initial velocity, *v* is final velocity, *s* is displacement from the position when t = 0 and *t* is time:

v = u + at $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$

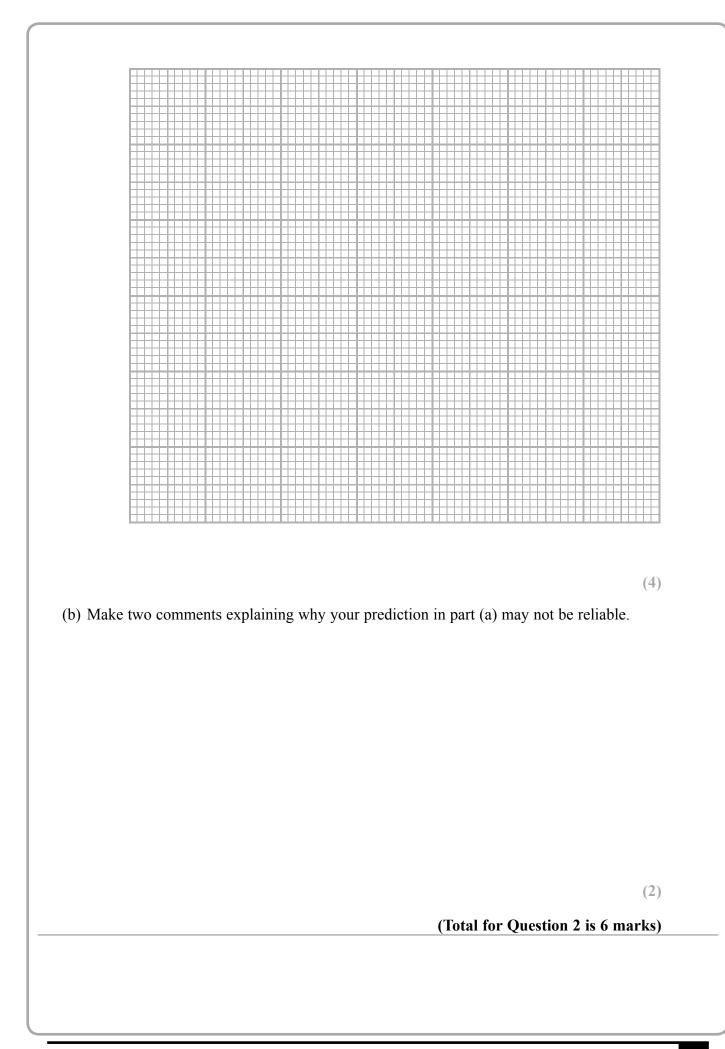
Answer ALL questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1 Liam, Sarah and Emily shared some money in the ratio 2 : 3 : 7 Emily got £80 more than Liam.

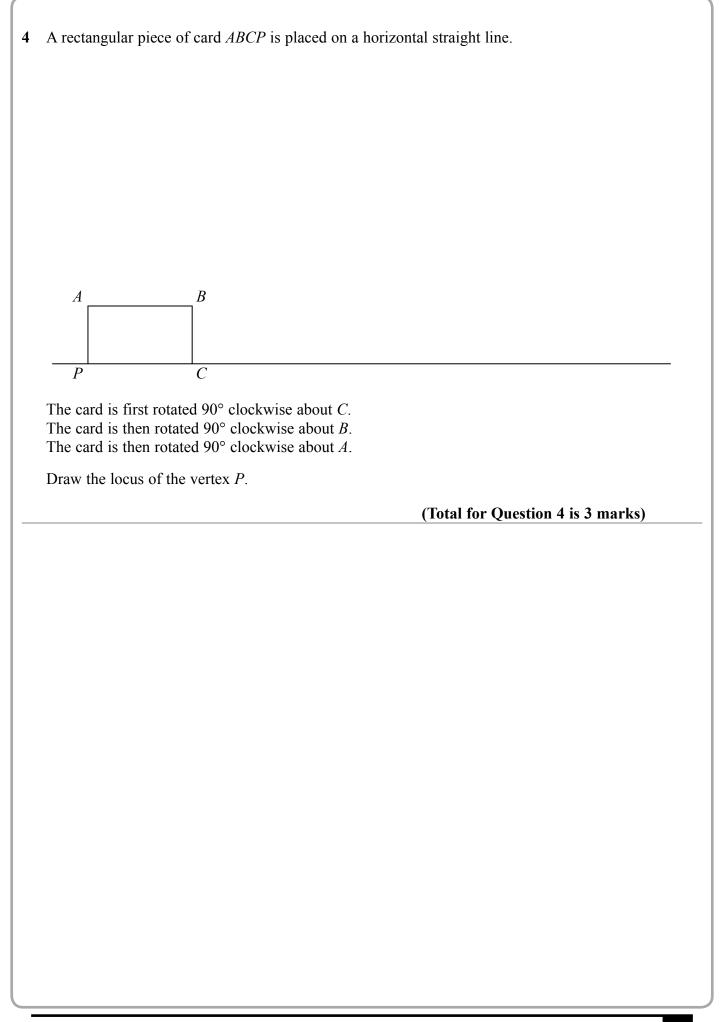
How much money did Sarah get?


(Total for Question 1 is 3 marks)

2 The table shows the life expectancy (in years) for males born in the UK from 2000 to 2012.

Year of birth	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Life													
expectancy (years)	75.4	75.7	75.8	76.1	76.6	76.9	77.2	77.4	77.6	78.1	78.4	78.8	79.0

(Data from statistics.gov.uk)


(a) Use this information to predict the life expectancy of a male born in 2030.

3 Given that A = 2⁴ × 3³ × 5 and B = 2³ × 3 × 5² write down, as a product of powers of its prime factors,
(i) the highest common factor (HCF) of A and B

(ii) the lowest common multiple (LCM) of A and B.

(Total for Question 3 is 2 marks)

(a) Solve the simultaneous equations 5 3x + 5y = 42x - y = 7(3) (b) Find the integer value of x that satisfies both the inequalities x + 5 > 8and 2x - 3 < 7(3)

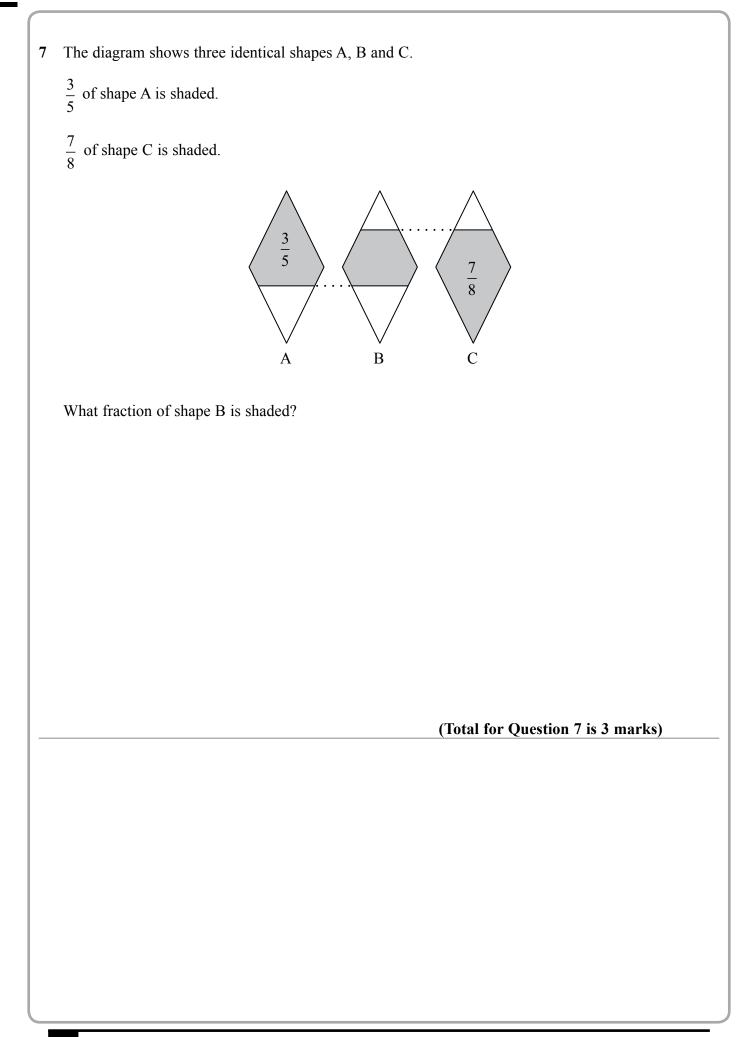
(Total for Question 5 is 6 marks)

6 Modelling the planet Mercury as a sphere, it has a radius of	f 2440 km.
--	------------

(a) (i) Work out an estimate in square kilometres for the surface area of Mercury.

(ii) Without carrying out a further calculation, give evidence to show whether your method gives you an underestimate or an overestimate for the surface area of Mercury.

(3)

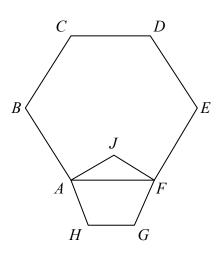

In July 2013, the spacecraft Messenger was near Mercury at a distance of 9.75×10^7 km from Earth.

Taking the speed of light to be 3×10^8 m/s,

(b) work out how long it takes light to travel a distance of 9.75×10^7 km.

(3)

(Total for Question 6 is 6 marks)


8 On a farm, $4\frac{1}{2}$ out of every 15 acres of the land are used to grow crops.

Wheat is grown on $\frac{5}{8}$ of the land used to grow crops.

What percentage of the total area of the land on the farm is used to grow wheat?

(Total for Question 8 is 3 marks)

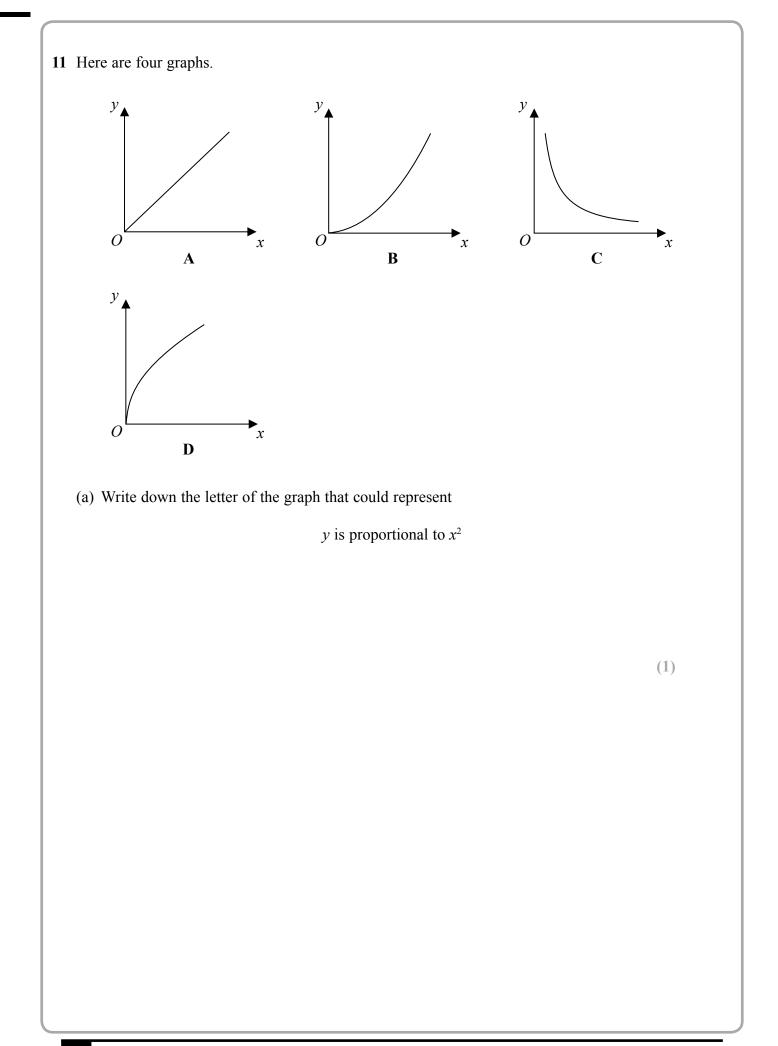
9 *ABCDEF* is a regular hexagon. *AJFGH* is a regular pentagon.

Work out the size of angle BAJ.

(Total for Question 9 is 4 marks)

10 Ishmael is a salesperson for a company.

His monthly wage is made up of his fixed basic wage plus commission. His commission for a month is a fixed percentage of the sales he makes that month.


The table gives some information about his monthly wages.

Month	Monthly wage (£)	Sales (£)
June	1700	20 000
July	2200	30 000
August	2050	27 000

In September, Ishmael's monthly wage was £1850

Work out his sales, in £, for September.

(Total for Question 10 is 4 marks)

- (b) The force of attraction, F newtons, between two magnets varies inversely as the square of the distance, d cm, between the two magnets.
 - (i) What happens to the force of attraction between the magnets when the distance between the magnets is doubled?

When the magnets are 3 cm apart the force of attraction between them is 40 newtons.

(ii) What is the force of attraction between the magnets when they are 10 cm apart?

(5)

(Total for Question 11 is 6 marks)

12 The functions f and g are such that f(x) = 1 - 5x and g(x) = 1 + 5x(a) Show that gf(1) = -19(2) (b) Prove that $f^{-1}(x) + g^{-1}(x) = 0$ for all values of x. (3) (Total for Question 12 is 5 marks)

13 A car has an initial speed of u m/s.

The car accelerates to a speed of 2u m/s in 12 seconds.

The car then travels at a constant speed of 2u m/s for 10 seconds.

Assuming that the acceleration is constant, show that the total distance, in metres, travelled by the car is 38u.

(Total for Question 13 is 4 marks)

14 Here is a board for a game.

		← Lef	t F	Right ——	•	
Win	-2	-1	Start	1	2	Win

Jim begins with a counter on **Start**. He rolls a fair dice.

He moves his counter one square to the right when the dice lands on 1 or on 2 or on 3 or on 4 $\,$

Otherwise he moves his counter one square to the left.

Jim rolls the dice twice and moves his counter twice.

(a) Work out the probability that his counter will then be on the square with 2 on it.

Jim puts the counter back on the Start square.

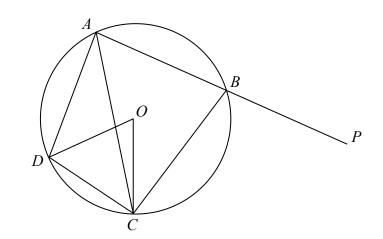
He rolls the dice 3 times and moves his counter three times.

(b) Work out the probability that his counter will then be on the square with -1 on it.

(3)

(2)

Jim wins the game when his counter lands on a square with Win on it.


Jim says:

"I cannot win in an even number of throws of the dice."

(c) Explain whether or not Jim is correct.

(1)

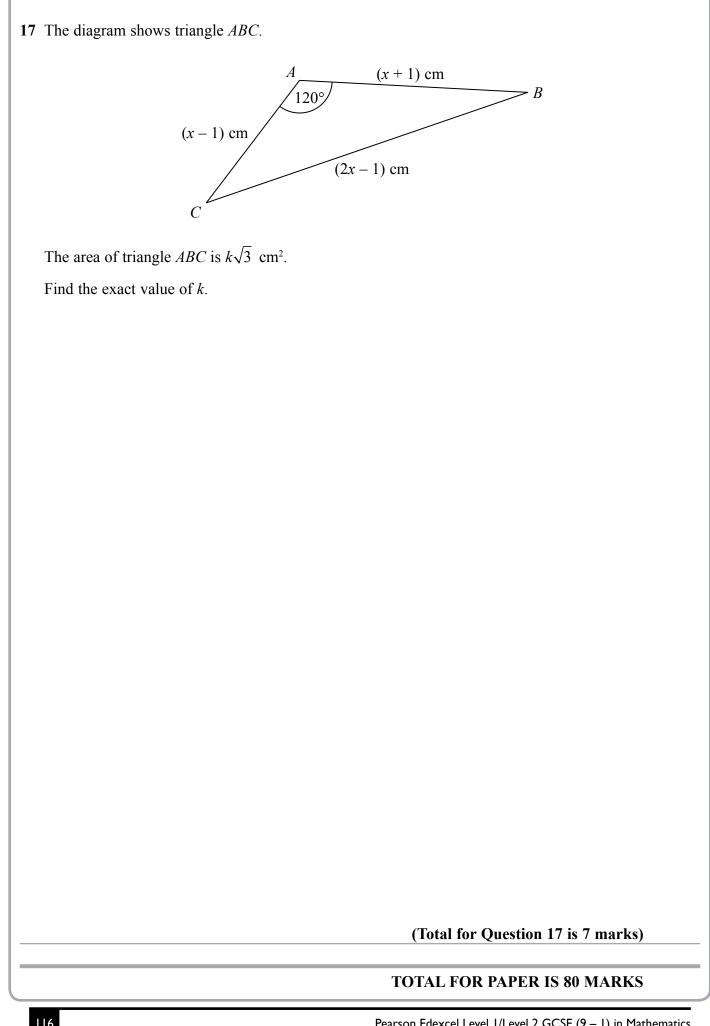
(Total for Question 14 is 6 marks)

A, B, C and D are four points on a circle, centre O.

PBA is a straight line. Angle $PBC = 100^{\circ}$. Angle $DAC = 23^{\circ}$.

Show that the size of angle $OCA = 10^{\circ}$ You must give a reason for each stage of your working.

(Total for Question 15 is 6 marks)


114

15

16	(i)	Sketch the graph of $f(x) = x^2 - 5x + 10$, showing the coordinates of the turning point
		and the coordinates of any intercepts with the coordinate axes.

(ii) Hence, or otherwise, determine whether f(x + 2) - 3 = 0 has any real roots. Give reasons for your answer.

(Total for Question 16 is 6 marks)

BLANK PAGE

BLANK PAGE

Higher tier	Higher tier Paper 1 – Non-calculator				
Question	Working	Answer	Mark	0V	Notes
1	- 2) (£48	Р	3.1d	P1 for a strategy to start to solve problem,
	$16^{\circ} \times 3^{\circ}$				e.g. $80 \div (7-2) (=16)$
			Ρ	3.1d	P1 for full process to solve problem,
					e.g. $(16' \times 3)$
			A	1.3b	AĪcao
2 (a)		84 to 85	d	2.3a	P1 for interpreting the data and deciding to draw a
					graph or a table to represent the data
			Р	2.3b	P1 for a correct process to label axes or communicate
					the data connections
			Р	3.1d	P1 drawing in an appropriate line of best fit or model
					the problem as a linear function in time
			A	1.3b	A1 for correctly reading off the value at 2030 in the
					range 84 to 85 or using their linear function correctly
					to give an answer in this range
(q)			U	3.4b	C1 for a valid comment eg cannot assume a linear
					relationship
			U	3.4b	C1 for a valid comment eg that one cannot predict
					accurately with a date so far away from the original
					data
3 (i)		$2^3 \times 3 \times 5$	В	1.3a	B1 cao
(ii)		$2^4 imes 3^3 imes 5^2$	В	1.3a	B1 cao
4		locus	U	2.3b	C1 for method of showing a rotation about one fixed
		(see diagram at			point, e.g. quarter circle with radius PC centre C or
		end)			radius <i>PB</i> centre B or <i>PA</i> centre A
		(mm)	С	2.3b	C1 for understanding it is a continuous process, e.g.

5(a) $3x + 5y = 4$ $10x - 5y = 35$ $x = 3, y = -1$ $10x - 5y = 35$ 5(b) $3x + 5 > 8$ $x + 5 > 8$ $x = 4$ $x = 3 < 7$ 5(b) $x + 5 > 8$ $2x < 10$ $x = 4$ $x = 3 < 7$ 6(a) (i) $4 \times 3 \times 2000^2$ $48\ 000\ 000\ km$ 6(a) (i) $4 \times 3 \times 2000^2$ $48\ 000\ 000\ km$ 7(b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ $325\ s$ 7Shaded area in B 19 7Shaded area in B 19	Sum on the	AIISWEF	IVIAIK	A0	Notes
(a) $3x + 5y = 4$ 10x - 5y = 35 10x - 5y = 35 10x - 5y = 35 13x = 39 (b) $x + 5 > 8$ x > 3 2x - 3 < 7 2x -					quarter circle with radius <i>PC</i> centre <i>C</i> and radius <i>PB</i> centre B and radius <i>PA</i> centre A
(a) $3x + 5y = 4$ 10x - 5y = 35 10x - 5y = 35 13x = 39 (b) $x + 5 > 8$ x > 3 2x - 3 < 7 2x < 10 (a) (i) $4 \times 3 \times 2000^2$ (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ (c) $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			U	2.3b	C1 for fully correct drawing
5 (b) $x+5>8$ x+5>8 x>3 x>3 2x-3<7 2x-3<7 2x<10 x<5 (a) (i) $4 \times 3 \times 2000^2$ (i) $4 \times 3 \times 2000^2$ (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			Μ	1.3b	M1 for correct method to eliminate one variable
5 (b) $x + 5 > 8$ x > 3 2x - 3 < 7 2x - 3 < 7 $2x < 10^{\circ}$ (a) (i) $4 \times 3 \times 2000^{2}$ (i) $4 \times 3 \times 2000^{2}$ (i) $9.75 \times 10^{7} \times 1000 \div (3 \times 10^{8})$ $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$	5		Μ	1.3b	M1 for correct method to find second variable
5 (b) $x + 5 > 8$ x > 3 2x - 3 < 7 2x - 3 < 7 2x < 10 (a) (i) $4 \times 3 \times 2000^2$ (i) $4 \times 3 \times 2000^2$ (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			A	1.3b	A1 for $x = 3$ and $y = -1$
(i) (a) (i) (a) (i) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c		x = 4	В	1.3b	B1 for $x > 3$ or for $x < 5$
$\begin{array}{c c} 2x - 3 < 7\\ 2x < 10\\ x < 5\\ (a) (i) & 4 \times 3 \times 2000^2\\ (i) & (b) & 9.75 \times 10^7 \times 1000 \div (3 \times 10^8)\\ & (b) & 9.75 \times 10^7 \times 1000 \div (3 \times 10^8)\\ & = 1 - \frac{2}{5} - \frac{1}{8} & \text{or } \frac{3}{5} - \frac{1}{8} \end{array}$			В	1.3b	B1 for $x > 3$ and for $x < 5$
(a) (i) $\frac{2x < 10}{x < 5}$ (i) $4 \times 3 \times 2000^{2}$ (ii) $9.75 \times 10^{7} \times 1000 \div (3 \times 10^{8})$ (b) $9.75 \times 10^{7} \times 1000 \div (3 \times 10^{8})$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			В	1.3b	B1 for $x = 4$ from $x > 3$ and $x < 5$
(a) (i) $4 \times 3 \times 2000^{2}$ (i) (b) $9.75 \times 10^{7} \times 1000 \div (3 \times 10^{8})$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$					
(ii) (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$)2	$48\ 000\ 000\ \mathrm{km}^2$	Μ	1.3a	M1 for use of $4\pi r^2$ with either π
(ii) (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$					or r rounded to 1 significant figure
(ii) (b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			A	1.3a	A1 accept 50 000 000 km ²
(b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			C	3.4a	C1 for appropriate evaluation of method, e.g. 3 and
(b) $9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$ Shaded area in B $= 1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$					2000 both less than true values
Shaded area in B = $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$	$1000 \div (3 \times 10^8)$	325 s	Μ	1.3b	M1 for use of distance ÷ time
Shaded area in B = $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			Μ	1.3b	M1 for consistent units
Shaded area in B = $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$			Α	1.3b	A1 cao
	in B	<u>19</u>	Р	3.1b	P1 for strategy to start to solve problem, e.g. $1 - \frac{3}{-1}$
		40			
	1		Р	3.1b	or $1 - \frac{7}{8}$ or correct equation, e.g. $x + \frac{1}{8} = \frac{3}{5}$
					P1 for setting up a calculation that will lead to the
					correct answer a_{0} , 2 , 2 , 1 , 3 , 1 , 7 , 2
			Α	1.3b	A1 cao

Question	Working	Answer	Mark	AO	Notes
	$\frac{4.5}{15} \times \frac{5}{8} = \frac{22.5}{120}$	18.75 (%)	Ч	P 3.1d	P1 for process to find amount of amount of land for wheat, e.g. $\frac{4.5}{15} \times \frac{5}{0}$
	$\frac{22.0}{120} \times 100$		Р	3.1d	P1 for complete process, e.g. $\frac{22.5}{\times 100}$
			A	1.3b	~ 120 A1 18.75 oe
		84°	Ь	3.1b	P1 for process to find size of interior angle of hexagon or pentagon
			Р	3.1b	P1 for establishing a correct process to find angle JAF , e.g. $JAF = (180 - 108) \div 2$
			Р	3.1b	P1 for a complete process to find angle <i>BAJ</i>
			A	1.3b	A1 cao

Question	Working	Answer	Mark	A0	Notes
10	Method 1	23000	Р	2.3a	P1 for process to interpret information,
	2200 - 1700 = 500				e.g. $2200 - 1/00 = 500$ oe or use $y = mx + c$ or start to draw graph
	30000 - 0000 = 10000		Р	3.1d	P1 for process to build on initial strategy,
	For every £100 increase in wage				e.g. $2200 - 1700 = 500$ and $30000 - 20000 = 10000$
	the increase in sales = ± 2000				oe use proportional increase or process to find
	1800 - 1/00 = 100			, , ,	m and c D1 for structure to use formed information
	Difference in sales		Ч	0.1d	F1 IOT SURIEGY to use round information, e.e. $1000 \div 5$ or use values of <i>m</i> and <i>c</i> or use straight
	$= 1.5 \times 2000 = 3000$				V.B. 1000 - 0 01 upo rundo 01 // und 001 upo ou upo ou upo 1 line granh
	20000 + 3000		V	1 3h	Alcan
	Method 2		4		
	Use $y = mx + c$				
	1700 = 20000m + c				
	2200 = 30000m + c				
	2200-1700				
	$m = \frac{30000 - 20000}{30000}$				
	= 0.05				
	$c = 2200 - 30000 \times 0.05 = 700$				
	When $y = 1850$, $x = \frac{1850 - 700}{200}$				
	CU.U				
	Method 3				
	Draw a graph				

Question	Working	Answer	Mark	AO	Notes
11 (a)		в	В	1.1	B1 cao
11 (b)(i)		$\frac{1}{4}$ of original force	d	3.1c	P1 for $F = \frac{k}{d^2}$ and $F = \frac{k}{(2d)^2}$ (<i>d</i> may be numerical) or 'Force gets smaller'
			d	3.3	P1 for full interpretation of results rather than a specific distance, e.g. $\frac{1}{4}$ of original force
(b)(ii)	$40 = \frac{k}{3^2} \ (k = 360)$	3.6 N	Μ	1.3b	M1 for $40 = \frac{k}{3^2}$
	$360 \div 10^2$		Μ	1.3b	M1 for complete method, e.g. $360 \div 10^2$
			Α	1.3b	Al cao
12 (a)	$g(1 - 5 \times 1) = 1 + 5 \times (-4)$ or $1 + 5f(1) = 1 + 5 \times (-4)$	Shown with working	d d	2.2 2.2	P1 for process to begin expansion, e.g. $(1 - 5 \times 1)$ or 1 + 5f(1) P1 for full process to stated expression
12 (b)	$f^1(x) = \frac{1-x}{5}$	Proof	d	2.4b	P1 for start to proof, e.g $f^1(x) = \frac{1-x}{5}$ or
	f ¹ (x) + g ⁻¹ (x) = $\frac{1-x}{5} + \frac{x-1}{5}$				$g^{-1}(x) = \frac{x-1}{5}$
	$=\frac{1-x+x-1}{5}=0$		Р	2.4b	P1 For continuation of proof, e.g. g $f^{1}(x) = \frac{1-x}{5}$ and
					$g^{-1}(x) = \frac{x-1}{5}$
			Р	2.4b	P1 for a complete proof with all steps shown

Question	n Working	Answer	Mark	A0	Notes
13	$0.5(u+2u) \times 12 + 2u \times 10$	Show	Ь	2.3a	P1 for process to interpret information, e.g. draw
			Р	2.2	graph P1 for process to identify a strategy, e.g. statement
					that distance is area under graph or one correct area
			Ь	2.2	P1 for process to find complete area,
					e.g. $0.5(u + 2u) \times 12 + 2u \times 10$
			Р	2.2	P1 for all steps given leading to result 38 <i>u</i>
14 (a)	4 4	16	d	3.1c	P1 for process to calculate probability of RR, e.g.
	$6^{-\times -}$	36	A	1.3a	$\frac{4}{6} \times \frac{4}{6}$ or sample space with all elements correctly
					identified
					A1 oe
14 (b)	$3 \times 2 \times 2 \times 4$	48	d	3.1d	P1 for process to calculate probability of RRL in any
		216			one order, e.g $\frac{2}{c} \times \frac{2}{c} \times \frac{4}{c}$
			Р	3.1d	P1 for process to calculate correct probability, e.g.
					$3 \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$
			A	1.3b	
14 (c)		Yes + reason	С	2.4a	C1 Yes because an even number of +1s and -1s
					cannot give the answers $+3$ or -3

Question	Working	Answer	Mark	A0	Notes
15	$ \ge DOC = 46^{\circ} $	10°	d	2.2	P1 \angle <i>DOC</i> = 2 \times 23° (angle at centre is twice angle
	$ \ge OCD = (180^{\circ} - 46^{\circ})/2 $				at circumference)
	$\sim ADC = 100^{\circ}$		Ь	2.2	P1 $\angle OCD = (180^{\circ} - '46^{\circ})/2$ (base angles of isosceles
					triangle <i>OCD</i>) and $\angle ABC = 180^{\circ} - 100^{\circ}$ (angles on a
	2 UCA - 3/				straight line sum to 180°)
	$2 OCA = 67^{\circ} - 57^{\circ}$		Р	2.2	P1 $\angle ADC = 100^{\circ}$ (opposite angles of a cyclic
					quadrilateral sum to 180°)
					$P1 \ge DCA = 180^{\circ} - '100^{\circ} - 23^{\circ}$ (angle sum of a
			Р	2.2	triangle is 180°)
			C	1.1	C1 for complete chain of reasoning to find angle
					OCA seen with 10° and at least 1 circle theorem
					quoted
			C	1.1	C1 dependent on all previous marks for full reasons
					at each stage

Question	Working	Answer	Mark	90	Notes
16 (i)	¥-1		M	1.3b	M1 for $(x - 2.5)^2 - (2.5)^2 + 10$ or attempt to find points to plot – must have at least 3 correct points evaluated
			Α	1.3b	A1 for $(x - 2.5)^2 + 3.75$ or parabola with minimum marked at $(2.5, 3.75)$
			C	2.3b	C1 for parabola drawn with minimum in 1st quadrant or y intercept at (0, 10)
			C	2.3b	C1 for parabola drawn with minimum in 1st quadrant at $(2.5, 3.75)$ and y intercept at $(0, 10)$
(ii)	×	Explanation	C	2.4a	C1 for a start to explanation, e.g. $f(x + 2) - 3$ is a (-2)
					translation of $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ or attempt to draw graph of $f(x + 2) - 3$ or
					Graph of $y = f(x + 2)$ and $y = 3$ drawn or $(x + 2)^2 - 5(x + 2) + 10 - 3 = 0$ $(x^2 - x + 1 = 0)$
			C	2.4a	C1 for a convincing explanation, e.g. new minimum at $(0.5, 0.75)$ so graph will not cross <i>x</i> axis or no interception between $y = f(x + 2)$ and $y = 3$ or demonstration that $x^2 - x + 1 = 0$ has no real roots

Question	Working	Answer	Mark	AO	Notes
17	$(2x-1)^{2} = (x+1)^{2} + (x-1)^{2} - 2(x + 1)(x-1) \cos 120^{0}$ $4x^{2} - 4x + 1 = x^{2} + 2x + 1 + x^{2} - 2x$	15 4	в	1.1	B1 for correct statement of cosine rule or $\frac{1}{2}ab\sin C$ or value of cos 120° or value of sin120°
	$x^{2} - 4x = 0$ $x^{2} - 4x = 0$ x = 4 Area = 0.5 × 3 × 5 × sin120 ^o		Ч	3.2	P1 for strategy to start to solve problem, e.g. $(2x - 1)^2 = (x + 1)^2 + (x - 1)^2 - 2(x + 1)(x - 1)\cos 120^\circ$
			d M	3.2 1 3h	P1 for strategy to reduce to a quadratic equation, e.g. $x^2 - 4x = 0$
			P	3.2	M1 for method to solve quadratic equation
			Р	3.2	P1 for attempt to use 0.5 <i>ab</i> sin <i>C</i> with numeric or algebraic values substituted
			V	1.3b	P1 for process to equate to $k\sqrt{3}$
					A1 for $k = \frac{15}{4}$ oe

Ø

Question 4